
IFLE Copy
APPROVED FOR PUBLIC !rL[,'-

DISTRIBUTION UNI IMI11TFV

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

DTI C
August 1988 NV

OPTIMAL SIMULATIONS BY B3UTTERFLY NETWORKS

Sandeep N. B3hatt, Fan R. K. Chung, Jia-Wel Hong, F. Thomson Leighton, and Arnold L
Rosenberg

Abstract

~-The pow of Butterfly-type networks relative to other Propose multicomputer interconnection networks is
studied. by considering how efficiently the Butterfly can simulate the other networks. Simulation is
represented formally via graph embeddings, so the topic here becomes: How efficiently can one embed
the graph underlying a given network in the graph underlying the Butterfly network? The efficiency of an
embedding of a graph G In a graph H Is measured In tefrms of. the dilation, or, the maximum amount that
any edge of GIs "stretched" by the embedding; theeiqWanslon, or, the ratio of the number of vertices of H
to the number of vertices of G. Three general results about embeddings In Butterfly-type graphs are
established here, tha expose a umber of simulations by Butterfly-type networks. which are optimal (to
within constant factors): (1) Any plate binary tree can be embedded In a Butterfly graph, with
simultaneous dilation 0(1) and nsion 0(1). (2) Any n-vertex graph having a r2~-blfurcator of size S

fl(log n) can be embedded In Butterfly graph with simultans dilation O(Iog S) and expansion 0(1). (3)

Anyebeddngvf plnrpG In aButterfly graph must havedlation f fog E (G)J/9 (G)): E (G) Is the
size of the smallest 1/3- 2/3v separator of G; # (G) Is the size of G3's largest interior face. Corollaries
Include: (a) The n-vertex X-tree be embedded In the Butterfly with simultaneous dilation Opog log n)
and expansion 0(1); no embeddi yields smaller dilaftion Independent of expansion. (b) Every
embedding of the n x n mesh In Butterfly has diltion n (log n); any expansion-O(i) embedding of the
mesh In the Butterfly achieves this d Thes results. which extend to Butterfly-like graphs such as the
Cube-Connected Cycles and Beries networks, supply the first examples of graphs that can be embedded
more efficienry In the Hypercube thanIn the Butterfly., 1 -- ,a

88 122030

MAicrosystems Massachusetts Camnhr~dge Telephone
Research Center Institute Massachusetts (617) 253-8138
Roam 39-321 of Technology 02139

Acknowledgements

Presented at the 20th ACM Symposium on Theory of Computing, Chicago, IL, May 2-4,
1988. This work was supported in part by NSF Grant Nos. MIP-86-01885, DCI-85-04308,
and DCI-87-96236, Air Force Contract OSR-86-0076, the Defense Advanced Research
Projects Agency under contract nos. N00014-80-C-0622 and N00014-87-K-0825, an NSF
Presidential Young Investigators Award, with matching funds from IBM and AT&T. _

Author Information

Bhatt: Department of Computer Science, Yale University, New Haven, CT 06520;
Chung: Mathematics, Information Sciences and Operations Research Division, Bell
Communications Research, Morristown, NJ 07960; Hong: Beijing Computer Institute,
Beijing 10044, CHINA; Leighton: Department of Mathematics, MIT, Cambridge, MA
02139; Rosenberg: Department of Computer and Information Science, University of
Massachusetts, Amherst, MA 01003.

Copyrightc 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for
government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

OPTIMAL SIMULATIONS BY BUTTERFLY
NETWORKS'

Sandeep N. Bhattt, Fan R.K. Chung§,
Jia-Wei Hongt, F. Thomson Leightoti ,

Arnold L. Rosenberg
Computer and Information Science Department

University of Massachusetts

I~r TA3F]

tYale University, New Haven CT i

§BeII Communications Research, Morristown, NJ
tBeijing Computer Institute, Beijing, CHINA

MIT, Cambridge, MA

1A preliminary version of this paper was presented at the 20th ACM Symposium

on Theory of Computing, Chicago, IL, May 2-4, 1988

Contact Author:

Arnold L. Rosenberg
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

Acknowledgments of Support: £

The research of S. N. Bhatt was supported in part by NSF Grant MIP-86-01885; the
research of F.T. Leighton was supported in part by Air Force Contract OSR-86-
0076, DARPA Contract N00014-80-C-0622, Army Contract DAAL-03-86-K-0171,
and and NSF Presidential Young Investigator Award with maAching funds from
ATT and IBM; the research of A. L. Rosenberg was supported in part by NSF
Grants DCI-85-04308 and DCI-87-96236.

Authors' Present Addresses:
Sandeep N. Bhatt: Department of Computer Science, Yale University, New Haven,
CT 06520;
Fan R. K. Chung: Mathematics, Information Sciences and Operations Research
Division, Bell Communications Research, Morristown, NJ 07960;
.ia-Wei Htong: Beijing Computer Institute, Beijing 100,14, CHINA; currently viR-
iting at Department of Computer and Information Science, University of Mas-

sachusetts, Amherst, MA 01003;
F. Thomson Leighton: Department of Mathematics, MIT, Cambridge, MA 02139;
.A rnold L. Rosenberg- Department of Computer and Information Science, University
of Massachusetts, Amherst, MA 01003

Categories and Subject Descriptors: C.1.2 [Processor Architecturesj: Mul-
tiple Data Stream Architectures - interconnection architectures; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems - Computations on discrete structures; G.2.1 [Discrete Mathematics]: Corn-
binatorics - combinatorial algorithms; G.2.2 [Discrete Mathematicsj: Graph
Theory - graph algorithms

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Mapping algorithms, mapping problems,
parallel architectures, processor arrays, simulation

• I

Abstract

The power of Butterfly-type networks relative to other proposed multicomputer
interconnection networks is studied, by considering how efficiently the Butterfly
can simulate the other networks. Simulation is represented formally via graph
embeddings, so the topic here becomes: How efficiently can one embed the graph
underlying a given network in the graph underlying the Butterfly network? The
efficiency of an embedding of a graph G in a graph H is measured in terms of:
the dilation, or. the maximum amount that any edge of G is "stretched" by the
embedding; the expansion, or, the ratio of the number of vertices of H to the
number of vertices of G. Three general results about embeddings in Butterfly-type
graphs are established here, that expose a number of simulations by Butterfly-type
networks, which are optimal (to within constant factors): (1) Any complete binary
tree can-be embedded in a Butterfly graph, with simultaneous dilation 0(j) and
expansion 0(l). (2) Any n-vertex graph having a vi2-bifurcator of size S = fn(lg n)
(a-a be embedded in a Butterfly graph with simultaneous dilation O(log S) and
expansion 0(1). (3) Any embedding of a planar graph G in a Butterfly graph
must have dilation 11 ('o :1G): E(G) is the size of the smallest 1/3-2/3 vertex-
separator of G; 4$(G) is the size of G's largest interior face. Corollaries include: (a)
The n-vertex X-tree can be embedded in the Butterfly with simultaneous dilation
O(log log n) and expansion 0(l); no embedding yields smaller dilation, independent.
of expansion. (b) Every embedding of the n x n mesh in the Butterfly has dilation
0(log n); any expansion-O(1) embedding of the mesh in the Butterfly achieves this

dilation. These results, which extend to Butterfly-like graphs such as the Cube-
Connected Cycles and Benes networks, supply the first examples of graphs that can
be embedded more efficiently in the Hypercube than in the Butterfly.

U

ml I I I-

1INTRODUCTION

This paper reports on a continuing program of the authors, dedicated to determining
the relative computational capabilities of the various interconnection networks that
have been proposed for use as multicomputer interconnection networks IBCLR, BI,
GHR, LeJ. We focus here on one member of the family of butt erfly-like machines,
that have become one of the benchmark architectures for inulticomputers. The
major contributions of this paper are the following general results about embeddings
of graphs in Butterfly networks':

1. We embed the complete binary tree in the Butterfly network, with simulta-
neous dilation 0(1) and expansion 0(1).

2. We embed any n-vertex graph having a V'2-bifurcator of size S = ((log n)
in the Butterfly network, with simultaneous dilation O(log .5) and expansion
0(i).

3. We prove that any embedding of any planar graph G in a Butterfly network
must have dilation

(log E(G)'(G)J
where: E(G) is the size of the smallest 1/3-2/3 vertex-separator of G; 4(G)
is the size of G's largest interior face.

The latter two results lead to ernbeddings of graphs such as X-trees and meshes in
the Butterfly, that. are optimal, to within constant factors. By Result 2, such embed-

(lings can be found with expansion 0(1) and with, respectively, dilation 0(log log n)
and O(log n); by Result 3, no embeddings can improve on these dilations, indepen-
dent of expansion. These embeddings expose X-trees and meshes as the first known
graphs that can be embedded very efficiently in the Hype rcube (simultaneous dilation
0(1) and expansion 0(1)) but have no efficient embedding in butterfly-like graphs.
Note that, if we restrict attention only to the issue of dilation, then - to within con-
stant factors - these graphs cannot be embedded any more efficiently in Butterfly
graphs than they can in complete binary trees!

1.1. The Formal Setting

'ae technical vehicle for our investigations is the following notion of graph embed-
ding IRoJ. Let G and H be simple undirected graphs. An embedding of in H is a

All technical terly a tre definwed in Section 1.1.

i O(11

one-to-one association of the vertices of G with vertices of H, plus a routing of each
edge of G within H, i.e., an assignment of a path in H connecting the iningml. of
the endoinLts of each edge of G. The dilation of the embedding im the length of the
lon|gest path in H that routes an edge of G; it thus measures how much the edges of
G are "stretched" by the embedding. The expansion of the embedding is the ratio
IH/IGI of the number of vertices in Hto the number of vertices in G. We use the
dilation- and expansion-costs of the best embedding of G in H as our measures of
how well H can simulate G as an interconnection network: One views the graph H as
abstracting the processor-intercommunication structure of a physical architecture;
one views the graph G as abstracting either the task-interdependency structure of
an algorithm one wants to implement on H or the processor-intercommunication
structure of an architecture one wants to simulate on H.

Remark. A third important measure of how well H can simulate G is congeation,
the maximum number of edges that are routed through a single edge (or vertex) of
H. Congestion does not play a major role in this paper, however, since
1. our embedding of a complete binary tree in a Butterfly trivially has unit conges-

*tion;
* 2. the n-vertex Butterfly is known to be able to simulate any n-vertex bounded-

degree graph with O(logn) delay, irrespective of the fact that the dilation and
congestion of the corresponding embedding may both be fZ(log n); 3. our major
focus is on developing broadly applicable techniques for bounding the dilation or
embeddings.
Hence, for our purposes, dilation is the central measure of concern.

Our results hold for a large variety of "levelled" Hypercube-derivative host.
graphs (which play the role of our H's), that we collectively term butterfly net-
works. For the sake of rigor, we focus on one particular such network (which can
be viewed as the FFT network, with input and output vertices identified), although
we could just as easily substitute other such graphs - the Cube-Connected Cycles
JPVJ or Benes network [Be], for example. Formally,

* Let m be a positive integer. The m-level Butterfly graph B(m) has vertex-set'

Vm= (0,1,..,m- x) {0,1).

The subset V,.t = {e} x {0, 1} of VI (0 < t < m) is the eth level of B(m).
The string z E (0, 1} of vertex (t, x) is the position-within-level string (PWL
string, for short) of the vertex. The edges of B(m) form butterflies (or, copies

(0, 1)"' denotes the set of length-rn binary strings.

2

I'

to CIO00 @0 1 001 I01 Oil 11

Figure 1: The 3-level Butterfly graph B(3)

of K 2 ,2) between consecutive levels of vertices, with wraparound in the sense
that level 0 is identified with level m. Each butterfly connects vertices

S(t, 0001 ... t-,00t+1 .. "#M-I)

and
,\t, 00o01 ... "/ -ll/e+l ...'".- 1)

on level I of B(m) (0 < < m; each /3i E {0, 1)) with vertices

(t + 1(ro od m), #0 j~ ... oe-10/0e+ 1 ... # M-1)

and
(t + 1 (m od rn), 60o0 1 """ ot- 1l0t+l " .. A .-)

on level t + 1(mod m) of B(m). One can represent B(m) level by level, in
such a way that at each level the PWL strings are the reversals of the binary
representations of the integers 0, 1,... ,2"' - 1, in that order. See Fig. 1.

The guest graphs in our study, which play the role of our G's, are complete
hinary trees, X-trees, and meshes; see Fig. 2. Formally,

3

(c)

Figure 2: The Complete Binary tree T(2), the X-tree X(2), and the mesh M(4)

4

o The height-h complete binary tree T(h) is the graph whose (2h+' - 1)-element
vertex-set comprises all binary strings of length at most h, and whose edges
connect each vertex x of length less than h with vertices x0 and z. The
(unique) string of length 0 is the root of the tree, which is the sole occupant of
level 0 of the tree; the 2' strings of length t are the level-t vertices of the tree;

the strings of length h (i.e., the level-h vertices) are the leaves of the tree.

o The height-h X-tree X(h) is the graph that is obtained from the height-h
complete binary tree T(h) by adding cross edges connecting the vertices at
each level of T(h) in a path, with the vertices in lexicographic order. X-trees
inherit a level structure from their underlying complete binary trees.

o The s x s mesh M(s) is the graph whose s2 element vertex set comprises the
ordered pairs of integers

{1,2,..,s} x

and whose edges connect vertices (a,b) and (c,d) just when la-cl+ lb- dl -- 1.

All of these networks have been seriously proposed as interconnection networks
for multicomputers [DP, Ga. HZ], hence are important candidates for our study.
Another approach to comparing these networks, via implementation and analysis.
or specific algorithms, appears in lAg].

Our results depend on three structural features of a graph G:

1. Let S and k be positive integers. The n-vertex graph G has. a k-color V/'2-
bifurcator of size S if either n < 2 or the following holds for every way of
labelling each vertex of G with one of k possible labels: By removing -. S
vertices from G, one can partition G into subgraphs G, and G2 such that'
(a) IIG11 --IG21I < 1.

(b) For each label 1, the number of I-labelled vertices in G is within 1 of the
number of I-labelled vertices in G2.
(c) Each of G1 and G2 has a k-color v2--bifurcator of size S/v'2i.

2. A 1/3-2 / (vertez-)separator of G is a set of vertices whose removal partitions
G into subgraphs, each having _ IG1/3 vertices; we denote by E(G) the size
of the smallest 1/3-2/3 vertex-separator of G.

3. When G is planar and we are given a witnessing planar embedding t, we
denote by t, (G) the number of vertices in G's largest interior face in the
embedding. When (is clear from context, we omit the subscript.

;W, denote hy G ;I ihe ll11n1bher of vertices in the lgrph G.

5

1.2. The Main Results

We prove three results about optimal embeddings in the Butterfly that lead to a
variety of nontrivial optimal embeddings.

Theorem I The complete binary tree T(h) can be embedded in a Butterfly graph,
with simultaneous dilation 0(1) and expansion 0(1).

Obviously, the embedding of Theorem 1 is within a constant factor of optimal in
both dilation and expansion. Building on the embedding, we obtain the following
general upper bound result.

Theorem 2 Any n-vertex graph G having a Vr2/-bifurcator of size S = f(Ilog n) can
be embedded in a Butterfly graph with simultaneous dilation 0(log S) and erpansion
0(l).

We balance Theorem 2 with one of the first broadly applicable results for bound-
ing dilation from below.

Theorem 3 Any embedding of a nontree planar graph G in a Butterfly graph has-
dilation f). This bound cannot be improved in general.

L)irect. application of the proofs of these results yields the following optimal
embeddings.

Corollary 1 The height-h X-tree X(h) can be embedded in a Butterfly graph with
simultaneous dilation 0(log h) = 0(log log IX(h)1) and expansion 0(1). Any embed-
ding of X(h) in a Butterfly graph must have dilation fl(logh) = fl(log log IX(h)1).

Corollary, 2 Any embedding of the s x s mesh M(s) in a Butterfly graph must have
dilation f'I(log s) = 11 (log IM(s)1).

Corollary 2 betokens a mismatch in the structures of meshes and Butterfly
graphs, since any expansion-O(1) embedding of any graph G in B(m) has dilation
O(log IGD).

'This follows from the facts that B(m) has m2"' vertices and diameter 0(m).

6

Theorem 1 and Corollaries 1 and 2 can be interpreted as yielding tight bounds
on the efficiency with which a Butterfly machine can simulate a complete-binary-
tree machine, an X-tree machine, and a mesh-structured machine, with regard to
both delay (dilation) and resource utilization (expansion). Equating dilation with
delay is most appropriate when the machines are to be run in SIMD mode.

The next three sections are devoted to proving our main results.

2. COMPLETE BINARY TREES

2.1. Embedding Many Small Trees in a Butterfly

It is obvious from inspection that one can find an instance of the height-(rn - 1)
complete binary tree T(rn - 1) rooted at every vertex of B(m). Somewhat less
obvious is the fact that one can find rn mutually disjoint instances of T(rn - 1) as
subgraphs of B(m). We now verify this fact via an embedding which will prove
useful as we develop our final embedding.

* Proposition I For every integer m, one can find m mutually disjoint instances of
T7(m - 1) as .subgraphs of B(m).

Proof. To simplify exposition, we represent sets of binary strings by strings over
die alphabet. {O, , }. using as a wild-card character. The length-k string

0 = /30/3,"".Jk-I,

where each/3, {0, 1, *}. represents the set a(#) of all length-k binary strings that
have a 0 in each position i of /3 where /3i = 0, a 1 in each position i of 0 where
/3 = 1, and either a 0 or a 1 in each position i of 3 where #, = *. For illustration,
a(0O0) = {010}, and a(O * 1) = {001,011}. Call the string /3 the code for the set

On to our embeddings of m instances of T(r - 1) in B(m): For any letter a
arid nonnegative integer k, we denote by ak a string of k a's.

7

For the first instance of T(m - 1), we have the following correspondence between
tree vertices and Butterfly vertices.

Tlm - 1) Bm

ievel 0 (0, 0"i)
level I (1, *0m- 1)

level 2 (2, *20 "i-2)

level m - I (M - I, *'-1O)

For each subsequent instance of T(m - 1), say the jth where 1 < j < m, we have
the following correspondence between tree vertices and Butterfly vertices.

T(m - 1) B (m)

level 0 (j - 1, 0-IlOM-i-11)

level 1 (j, 0--11 * Om-j-21)
level 2 (j + 1(mod in), W-11 *2 Om-j-31)

level m - I (j - 2, O-11*m-)

The placement of the l's in the PWL strings ensures that the m instances of
T(m - 1) are mutually disjoint. To verify this, via-contradiction, let us look at an
arbitrary level t of B(m) and at arbitrary distinct tree vertices i and j that. collide
at some position within level e of B(m). It is clear that all Butterfly vertices that
are images of the same instance of T(m - 1) are distinct, so we may assume that
vertices i and j come from distinct instances of T(m - 1), call them L(i) and L(j).
where the t-"name" of an instance of T(m - 1) is the level of B(m) where its root
resides. We consider four cases that exhaust the possibilities. In each case, we
adduce a property of the PWL strings that precludes any overlap in the images of
the trees.

)= 0:

If t(i) = 0, then the PWL string of i ends with 0m-e, while the PWL
string of j has a 1 in this range, specifically, in position m - 1 if j < f,
and in position j if j > t.

8

Every PWL string of L(i) starts with 0'1, while every PWL string of t(j)
starts with W 1.

Every PWL string of tui) has a 0 in position j, while every PWL string
of t(j) has a I in that position.

f < t(I) < L(j) <M

Every PWL string of t(i) has a 1 in position i, while every PWL string
of t(j) has a 0 in position i.

The proof is complete. M

An algebraic proof of Proposition 1, which is "cleaner" than our combinatorial
proof here, appears in IABRI; however, it is the embedding rather than the result
that will be helpful in our proof of Theorem I.

The embedding in our proof of Proposition 1 does not serve us directly in our
attempt to embed a large complete binary tree in a small Butterfly, since (for one
thing) it places the roots of every instance of T(rn - 1) at a different level of B(m);
and it is not clear how to combine these instances into a bigger complete binary
tree with small dilation. However. the overall strategy of the embedding will be
useful in Section 2.2.D.

2.2. Optimally Embedding Trees in Butterfly Graphs

We turn now to the proof of Theorem 1. Specifically, we prove the following.

For any integer m, one can embed the complete binary tree T(m +
[logmj - 1) in the Butterfly graph B(m + 3), with dilation 0(1).

To simplify our description, let q =d.f M + [loginJ - 1, and assume henceforth
that m is even: clerical changes will remove the assumption.

A. Tie Embedding Strategy

\We wish to iil)CeI the tree T(q) with dilation 0(1), in the smallest Butterfly
that, is big enough to hold the tree, namely. B(mi). We fall somewhat short of this

9

goal, but not by much: We find an embedding with dilation 0(i), but we have
to use a somewhat larger host Butterfly graph (specifically, B(m + 3)) in order to
reolve collisions in our embedding procedure. Our embedding proceeds in four
stages. Stage 1 embeds the top log m levels of T(q) with unit dilation in B(m),
thereby specifying implicitly the images in B(m) of the roots of the m/2 subtrees of
T(q) rooted at level log m - 1. Stage 2 expands these subtrees a further m/2 levels,
but now in B(m + 1), with dilation 2, thereby specifying implicitly the images in
B(m) of the roots of the m 2m/21 subtrees of T(q) rooted at level m/2 + log m - 1
of the tree. In Stage 3, we embed the final m/2 levels of T(q) in B(m + 1), with
dilation 4. The vertex-mappings in each stage are embeddings (i.e., are one-to-one);
there is, however, "overlap" (i.e., distinct vertices of T(q) getting mapped to the
same vertex of 3(m + 1)) among the mappings of the three stages. In Stage 4, we
eliminate this overlap by expanding the host Butterfly by two more levels, thereby
giving us four connected isomorphic copies of B(m + 1). At the cost of increasing
dilation by 2, we modify our mapping so that each of Stages 1, 2, 3 is performed in
a distinct copy of B(m + 1), thereby eliminating all overlap.

B. Stage 1: The Top log m Levels of T(q)

We place the root of T(m + log m) at position

(M -logiM, 0')

of B(m). We then proceed to higher-numbered levels, embedding the top log m
levels of T(q) as a subgraph of B(m), ending up with the leaves of these levels in
positions

of B(m) (because of wraparound). See Fig. 3. We call the rightmost log m - I bits
of each of the resulting PWL strings the signature of the Butterfly position and of
the subtree rooted at that position. It is convenient to interpret a signature as an
integer in the range (0, 1,. .. ,M/2 - 1}, as well as a bit string.

The embedding in Stage 1 is trivially one-to-one, with unit dilation.

C. Stage 2: The Next m/2 Levels of T(q)

Call the (m/2 + 1)-level subtree of T(q) that has signature k, the k" subtree.
Our goal is to embed the kth subtree in B(m + 1) (with dilation 2), so that its 2 /2

leaves form the set of positions5

(m-l, ,0,0 ... *0.*1,*0 ...,*0,*0?),

'The last bit position is not affected by this Stage, so is denoted u?.

10

IFI

Figure 3: A logical view of the first log m levels of the embedding

where the 1 appears in the k"h even position from the right (using O-based counting);
call this the signatory I of the tree position. For instance, when m = 8, the second
subtree has leaves in positions

(7, *0 * I *0* 0?)

of B(9). We embed these (m/2 + 1)-level trees by alternating binary and unary
branchings in B(m + 1), starting at the "roots" placed at level-0 vertices of B(77 4 1)
during Stage 1; we place a tree-vertex after each unary branching. See Fig. I.
Binary branchings generate the *'s in the code for the set of PWL strings, while
unary branchings generate the 0's and l's in the code. As a simple example: a
binary branching from vertex

(0, 000000011;,

which holds the root of one of the subtrees planted during Stage 1, generates vertices

'1, *00000011;

a unary branching thence generates vertices

(2. i-00000011',

where we place the level-] vertices of the subtree; a second binary branching gen-
erates vertices

/"3o, : 000011;

a inary branching thence generates vertices

(4, *0 1 100011.

where we place the level-2 vertices of the subtree; a subsequent sequence of alter-
nating binary and unary branchings finally embeds the desired set of leaf positions
in the advertised vertices of B(m + 1).

This stage of our embedding clearly has dilation 2. The fact that that this stage
is one-to-one (though it may produce conflicts with the embedding from Stage 1)
has two origins. First, we are using levels 0 through m of B(m + 1) for the rn + I
levels of this stage, so the leaves of the embedded trees do not wrap around to
conflict with their roots. Second, each signatory 1, whose placement identifies its
respective tree, is set "on" before the signature bits are reached and altered by the
sequence of branchings. This is ensured by the fact that we place the signatory I
by counting from the right: the signature bits occupy the rightmost log m - I bits

12

Figure '4: A logical view of the next. n/2 levels of the embedding

of the PIWL string; by the time the branchings have reached the i"h bit from the
right, only the rightmost. (log i) bits of the signature are needed to specify the next

S. position where branching occurs. Hence, at. the point when we place the signatory
I in the ij 'l position. the odd-numbered positions to the left of the I are all 0, and
he positions Io the right of the 1 form the binary representation of i, possibly with

leading Os.

D. Stage 3: The Final m/2 Levels of T(q)

Our goal in Stage :, is to use the n • 2 m/2-1 leaves of the m/2 trees generated

in Stage 2 as the root.s of the (m/2 + 1)-level subtrees comprising the bottom 11/2
levels of T(q). Each root has a signatory 1, identifying the subtree it came from
in Stage 2, and a serial number obtained from the odd-numbered bits of its PWL
string. The signatory l's will keep trees sired by different Stage-2 trees disjoint; the
srial numbers will guard against collisions among trees that were sired by the same
Stage-2 tree. The main challenge here is to achieve the embedding while the roots

of all the trees reside at the same level of B(m+ 1) (which is how Stage 2 has placed
Ihem). To accomplish this, we have the trees grow upward, in the direction of lower
le el-numbers, for varying amounts of time, before starting to grow downward, in
Ih, dire ctionl of higher level-numbers. While growing either upward or downward,

a Ire grows via alternating unary and binary branchings, so as to presrr Ihr
.sriI riumb! rr; thIis allteriati n will iicnir (ilation 2. Ali additional dilat ion of 2 is
ki)(irrel while a tree grows upward: each tree begins to grows upward using only

13

Figure -,: A logical view of the final m/2 levels

every fou rth level of B(m + 1); when it "turns" from growing upward to growing
dowimard, it. uses the levels it has skipped while moving upward to regain level 0
of' 11(m - i), at which time it grows downward using every other level of B(m -1 1).
Seee Fig. 5. Thus, in all, this Stage of the embedding incurs dilation 4.

All trees with the same signatory 1 (i.e., rooted at the leaves of the same Stage-2
tree) will grow in lockstep. We refer to the trees sharing a signatory I in the k'
even bit-position as the kth subtrees of T(q), 0 < k < m/2. We place the vertices of
the kth subtrees of T(q) into B(m + 1) as follows:

* For the 0"h trees, we place the 2' level-t vertices of T(q) at level 2t of B(m + I).
(Thus, these trees grow downward immediately.)

* For the kt trees, k . 0:

- we place their unique level-0 vertex at level 0 of B(m + 1) (in fact this
was placed during Stage 2)

14

- for I < I < [k/2], we place their 2' level-I vertices at level m - 41 + 1 ofB(m + 1)
- if k is odd. we place their 2 [k/2 1 level-([k/21) vertices at level m-4 [k/21 -4

3 of B(m + 1)

- for [k,!21 + 1 < e < k, we place their 2' level-I vertices at level m - 4(k -
1) - I of B(?n + 1)

Now we verify that the described mapping is one-to-one, hence an embedding.
We consider separately the two potential sources of collisions.

First., we note that there can be no collisions among the 2'/2 kth trees, for any
k, since each of these trees has a unique serial number.

Second, we note that, for each fixed serial number. there can be no collision
between the 1t" and kth trees having that serial number. This is argued most easily
by considering how such trees are laid out level by level. To simplify exposition, we
)resetl. only the even bit-positions of the image vertices in B(rn + I), since the odd

lil.-positions hold idelltical serial numbers. Note first that the top k levels of each
kt tree are placed in vertices of the form

in f(n -1 I); hence. their membership in a kth tree is announced by the left moslt
M?? '2 k 4 1 even hit-positions of the PWL strings. For tree-levels -k, the J and
V' trees are distinguished as follows. Say. with no loss of generality, that, j - k.
l-'or each 0 - f m; 2 - k. the level-(k + () vertices of each k' tree are placed at.
vrt ices

f, ieIM2-k-tj0 k

of' (m + 1). By the same token, for each 0 - f -m/2 - j, the level-(j + t) vertices
of each j"' tree are placed at vertices

(t, *1om/2-i-lOil)

of ul(m + I). Since j k by hypothesis, we see that, at those levels of B(m 4 I)
where we place vertices of both trees, the k " even bit-position from the right of each
V' tree contains a 1, while the corresponding bit-position of each jt, tree contains
a 0.

"'lhs, the mapping in this stage is an embedding.

E. Resolving Collisions

15

S-TAGE 7. s Th6-(E 3 j j

Figure 6: Replicating B(m + 1) to avoid collisions

We now have three subembeddings that accomplish the desired task, except for
the fact that Stage i and Stage j may map different tree vertices to the same But-
terfly vertex. We resolve these possible collisions as follows. Instead of performing

the subembeddings in B(m + 1). we perform them in B(m + 3), placing each suhe-
inbedding in a distinct copy of B(rn +- 1). We make the transition between copies
of 11(m I 1) as follows. As the Stage-i embedding of the top of T(q) reaches level
II I of its copy of B(m - 1), we use a sequence of unary branchings in B(m. 1 :) to
reaich level 0 of the next copy of B(rn + 1). We perform the Stage-2 subehed(lding
wilhiii this second copy; this takes us to level m - 1 of that copy, where a seqielice
of unary branchings in B(m + 3) takes us to level 0 of the third copy of B(m + 1).
We perform the Stage-3 subembedding in this third copy. See Fig. 6. The transi-
tion from level In - 1 of the second copy of B(m + 1) to level 0 of the third copy
engenders dilation 4.

The embedding, hence the proof, is now complete. 0

2.3. The Issue of Optimality

Theorem 1 settles for an embedding of complete binary trees in Butterfly graphs,
that. achieves dilation 0(1) and expansion 0(1) simultaneously. While this achieves
our overall goal of optimality to within constant factors, it does leave open the
possibility of those constant-factor improvements. We have been unable to deter-
mine exact dilation-expansion tradeoffs for embeddings of complete binary trees in
Butterfly graphs, but we can show easily that it is impossible to optimize both cost

16

- i i

measures simultaneously. Thus, one cannot hope for the level of "perfection" found
in, say, IGHRI' .

Proposition 2 No embedding of T(q) in B(m + 1) has unit dilation.

Proof. Both complete binary trees and Butterfly graphs are bipartite graphs: one
can color the vertices of either graph red and blue in such a way that every edge
connects a red vertex and a blue one. For any Butterfly graph B(r), on the one
hand, the numbers of red and blue vertices are within r of being equal; for any
complete binary tree, on the other hand. one of the sets has roughly twice as many
vertices as the other. Thus, one cannot find a unit-dilation embedding of a complete
binary tree in the smallest Butterfly graph that has enough vertices to hold it. [I

3. UPPER BOUNDS - THEOREM 2

This section is devoted to proving Theorem 2. Since all of the relevant ideas in the
proof are p'resent. in its application to specific families of graphs, we actually prove
only the upper hound of Corollary 1. The reader should be able to generalize easily
to arbitrary families of graphs, thereby proving Theorem 2. For the remainder of
the Section. we I herefore focus on the problem of embedding X-trees in Butterflies.

Our embedding of the X-tree in the Butterfly graph is indirect: First we find a
tiit-expansion, dilation-O(log log n) embedding of X(h) in T(h). Then we compose
this embedding with the expansion-O(1), dilation-O(1) embedding of T(h) in B(77)
from Theorem 1. to obtain the upper bound of Theorem 2. We discuss here only the
formter embeddiiig, which, in fact, embeds the X-tree X(m) in the complete binary
tree T(m). For notational simplicity, let n =adf 2

" +' - 1, the number of vertices in
X(m). We devote this section to proving the following.

Proposition 3 For any integer m, one can embed the X-tree X(m) in the complete
binary tree T(m), with dilation O(log m) = O(log log n).

Tsing the obvious fact that the n-vertex X-tree can be bisected (in the sense or
sta-teinct I above) by removing O(log n) edges, coupled with techr iques in Section
I of JBI,I. the reader can easily prove the following.

'1h, :11111 a variaiIt (if 13(m) witli ., wraparomid is embedded in the Hypercibe with imil
dilati ml .11l ,pilimal expansion.

17

Lemma I For all positive integers n,k, the n-vertex X-tree has a k-color v'2-
bifureator of size S = 2k log n.

Proof of Proposition S. Our embedding uses the following auxiliary structure, which
appears (in slightly different form) in IBCLRI. A bucket tree is a complete binary
tree, each of whose level-E vertices has (bucket) capacity

c og(n

for some fixed constant c to be chosen later (in Lemma 2). We embed X(m)
in T(m) in two stages: First, we embed X(m) in a bucket tree, via a many-to-one
function u that "respects" bucket capacities (always placing precisely c -log((2m $ I -
1)/ 2 ') vertices of X(m) in each level-t vertex of the bucket tree) and has constant
"dilation". Then we "spread" the contents of the bucket tree's buckets within T(m),
to achieve an embedding of X(m) in T(m), with the claimed dilation. Formally.
the first stage of the embedding is described as follows.

Lemma 2 Every X-tree X(m) can be mapped onto a bucket tree in such a way that:
(a) exactly

N(f) = 14 log (2 - 1) + 24

vertices of X(m) are mapped to each level-f vertex of the bucket tree, and
(b) vertices that are adjacent in X(m) are mapped to buckets that are at most
distance 5 apart in the bucket tree.

The constants in the expression for N(f) can be reduced by increasing
the constant 5 in part (b) of the Lemma (say, to 10). We suffer the
larger constants in order to simplify the technical development in the
proof. The interested reader can easily mimic our development with
other constants.

Proof. The basic idea is to recursively bisect X(m), using a 5-color v'2-bifurcator
(the uses of the colors will become clear momentarily), placing successively smaller
sets of v'2-bifurcator vertices in lower-level buckets of the bucket tree. We also
place other vertices in the buckets, in order to ensure the desired "dilation" and
in order to ensure that all buckets are filled to capacity. The formal description
of the mapping will require two iterations. First, we present a mapping procedure
that establishes the sufficiency of the quantities N(t) as bucket capacities. Then
we refine the initial mapping to complete the proof.

18

We simplify our description of this technically cumbersome procedure in two
ways. First, we describe in detail what the procedure would look like if we were
using S-color bifurcators rather than 5-color bifurcators; the reader should be able
to extrapolate from oor description to arbitrray numbers of colors. Second, we
establish the following notation.

e We denote by BA, where A denotes the null string (i.e., the string of length 0)
over the alphabet {1,2}, the bucket at the root of the bucket tree.

9 In general, letting z denote any string over the alphabet 11,2}, we denote
by B., and B. 2 the buckets at the children of the vertex of the bucket tree
having bucket B.; for example, B, and B2 denote the buckets at the children
of the root vertex of the bucket tree, B 1 and B12 denote the buckets at the
left grandchildren of the root vertex, B21 and B 22 denote the buckets at the
right grandchildren of the root vertex, and so on.

Algorithm Bucket: Mapping X(m) into a bucket tree

Step 1. Initial coloring and bisection.

S. l .a. Initialize every vertex of X(m) to color A.

l.b. Associate7 the graph X(m) with the root of the bucket tree.

L.e. Bisect X(m). to obtain subgraphs X, and X2, and place the v"-bifurcator
vertices in bucket BA.

I.d. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket BA with color 0.

I.e. Associate X, (I E {1,2}) with the child of the root vertex of the bucket.
tree holding bucket B,.

Step 2. Second-level bisection.

2.a. Use a 2-color v/2-bifurcator for each X,, to create subgraphs Xi and
X,2.

2.b. Place the vi2-bifurcator vertices for each X, in the corresponding bucket
B, of the bucket tree.

2.c. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket B, with color 1.

7 Th s il,DiS" lere illt.enderl to itake it easier for the reader to follow our (leecriptioti

,,f !he' 1allpings.

2.d. For each X,, associate each subgraph Xq with the v/2-bifurcator-tree

vertex associated with bucket B,.

Step 3. Third-level bisection.

3.a. Use a 3-color vr2-bifurcator for each X,,, to create subgraphs X,, and

3.b. Place the v2-bifurcator vertices for each X i in the corresponding bucket
B,i of the bucket tree.

3.c. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket B,, with color 0.

3.d. For.each Xj, associate each subgraph X,,A with the v2-bifurcator-tree
vertex associated with bucket Bjk.

Step s. (4 < a < rn) All remaining bisections.

s.a. For each subgraph X, (y E {1,2}) of X(m) created in Step s - 1. place
every vertex of color s (mod 2) in the associated bucket Bv.

s.b. Use a 3-color -v2-bifurcator for each X., to create subgraphs X,, and
Xv2.

s.c. Place the v/2-bifurcator vertices for each X. in the corresponding bucket,
B. of the bucket tree.

s.d. Recolor every A-colored vertex of X(m) that is adjacent to a vertex in
bucket B. with color length(y) (mod 2).

s.e. For each X.,, associate each subgraph XNW with the V2-bifurcator-tree
vertex associated with bucket B,.

We now analyze 5-color analogue of the described mapping, to show that it
satisfies the demands of Lemma 2, with the requirement of "exactly" N(t) vertices
per level-t bucket replaced by "no more than" N(t) vertices per level-t bucket, i.e.,
to show that our bucket capacities are big enough. Since the "dilation" condition
(b) is transparently enforced when certain colored vertices are automatically placed
in buckets (in Step s.a), it will suffice to establish that the populations of the
buckets are as indicated in the modified condition (a). This follows by the following
recurrence, wherein N(k) denotes the number of vertices of X(m) that get mapped
into a bucket at level k - 1 of the bucket tree.

3 -N(k - 5) + 10log n
16 2

20

with initial conditions

" N(1) - 21ogn

" N(2) : 4log (

* N(3)< 6log ()

" N(4) 8 log(n

" N(5).< 1 lOog (n)

The initial conditions reflect the sizes of the appropriately colored v'2-bifurcators
of X(m): At each level (, I < t < 4, one uses an t-colored v/-bifurcator, followed
by a 5-color \/'-bifurcator at all subsequent levels. At levels s > 2, the buckets
contain not only /2-bifurcator vertices, which account for the term

10 log (n)
i in the general recurrence; they contain also the vertices of X(m) that are placed

to satisfy the 'dilation" requirements. The latter vertices comprise all neighbors of
the N(k -- 5) occupants of the distance-4 ancestor bucket that have not. yet been
placed in any other bucket. Since vertices of X(m) can have no more than five
neighbors, and since our 5-color bisections allocate these neighbors equally among
the descendants of a given bucket, these "dilation"-generated vertices can be no

more than
5 N (k - 5) 3-N(k - 5)

16

in number. These two sources, the v0-bifurcators and their neighbors, account for
the occupants of the buckets and for the recurrence counting them. To complete
the proof of the modified Lemma, one now shows by standard techniques that the
indicated recurrence, with the indicated initial conditions, has the solution

N(k) < 14 log (n) +24.

Finally, we turn to the original form of the Lemma. This follows from the
modified forti, upon refining the Algorithm by adding the following substeps at the
indicated points.

21

, ,

Figure 7: Unloading the buckets

At. the end of each step of the Algorithm, when we have finished filling
a bucket B,, (x E {1,2}') with vertices obtained from a recent bisection
or from our desire to maintain small "dilation", we check the population
of the bucket against the ceiling population N(t), where I = length(z).
If the bucket contains fewer than N(e), vertices, then we add enough
new vertices to it from the remaining associated subgraph to fill it to
capacity.

This last step ensures that all buckets at level t of the bucket tree contain exactly
N(s) vertices. 0

Our final task is to refine the "dilation"-.5 mapping of Lemma 2 to a bona fide
embedding of X(m) in T(m), having dilation O(log log n). We proceed inductively,
emptying buckets into T(m) in such a way that each tree vertex is assigned a
unique X-tree vertex. In general, we denote by T. the smallest subtree of T(m)
that is rooted at level tength(z) of T(m) and that contains the contents of bucket
B,. (In general, the contents of B. will occupy only the last few levels of Ti.) See
Fig. 7.

* Place the log n elements of bucket BA in the topmost copy of T(log log n) in
T(m), in any way.

* Consider the subtrees of T rooted at level 1 of T(m). Place the contents of
bucket B 1 in the (roughly) log log n levels of the leftmore of these two subtrees,

22

starting immediately after the leaves of T. Place the contents of bucket B2
analogously, using the rightmore of these two subtrees, starting immediately
after the leaves of TA. We have thus implicitly defined the subtrees T, and T2.

Note that by this point, we are using enough of the top levels of T(m) that we need
use only one more level in order to place the contents of the next level of buckets.
The importance of this fact is that it guarantees that all of the subtrees T,, will
have height O(log log n). (Namely, TA, TI, and T2 have the desired height, and all
subsequent trees will result from adding one level of leaves to a tree whose root is
one level lower in T(m) than was its father's root.)

Proceeding inductively, assume that we have filled subtrees T. of T(m) with
bucket contents, for strings z E (1, 2)' of length < . We now consider
the subtrees of T(m) rooted at level t + 1; each subtree T_ rooted at level
e thus spawns two children. We order these 21+1 subtrees from left to right,
according to the lexicographic order on the subscript-strings x. We then place
the contents of the bucket B,1 in the leaves of the leftmore of the children of
T., beginning where the contents of bucket B. left off. Analogously, we place
the contents of the bucket Bz2 in the leaves of the rightmore of the children
of T2, beginning where the contents of bucket B, left off.

The described procedure clearly produces an embedding of X(m) in T(m), since
each vertex of X(m) is assigned to a unique tree vertex. Additionally, the em-
bedding has unit expansion since no tree vertices are passed over in the assign-
nient process and since all buckets at each level t have the same population N(f)
(so all subtrees T are isomorphic). Finally, the procedure's method of spreading
bucket contents throughout T(m) produces an embedding with the desired dilation,
namely, O(log log n). Specifically, by always spreading the contents of buckets B 2
and B,2 in the leaves of the left and right subtrees of the depth-O(log log n) subtree
that contains the contents of bucket B2 , the procedure guarantees that the least
common ancestor, in T(m), of the set comprising the contents of any bucket plus
the vertices in buckets at most five buckets up (which will lie in adjacent levels
k.k + 1,k + 2,k + 3,k + 4,k + 5 of the bucket tree) are always within a subtree
of height O(log log n) of T(m). Thus, we have produced the desired embedding,
thereby proving Proposition 2, hence Theorem 2. 0

4. LOWER BOUNDS - THEOREM 3

We demonstrate the near-optimality (to within constant factors) of the embeddings
or Section 3 - in fact, true optimality for X-trees - by proving the lower bound of

23

Theorem 3. In contrast with Theorem 2, Theorem 3 is most easily proved in its full
generality.

Assume henceforth that we are given a planar graph G, a planar embedding
of G, and a minimum-dilation embedding & of G in B(p); let ju have dilation 6.

We begin by noting that we can simplify our quest somewhat. Specifically, since
we aim only for bounds that hold up to constant factors, we lose no generality by
assuming henceforth that (in the embedding e) the exterior face of G is a simple
cycle:

Lemma 3 One can add edges to the graph G within the embedding i in such a way
that

e the resulting embedding e' i8 a planar embedding of the resulting graph G'

9 in the embedding c', the exterior face of G' is a simple cycle

9 E(c') = O(Y,(G))

e 0,,(G'.) = max(3,,,(G)).

Proof Sketch. If the exterior face of G is not a simple cycle, it is because of cut-
edges and/or pinch-vertices. We take each cut-edge in turn and create a triangle
containing it as an edge; then we repeat the process with any remaining cut-edge.
When no more cut-edges exist, we eliminate each pinch-vertex in turn by creating
a triangle that includes the pinch-vertex as a vertex. Since each added edge creates
a triangle and spans only two edges of G, the claims about f(G') and E(G') are
immediate. [3

A consequence of Lemma 3 is that we may henceforth assume that every edge
of G resides in some interior face (in the embedding e).

We turn now to the quantitative consequences of Lemma 3.

A set of faces of G is connected in the embedding e just when their corresponding
vertices are connected in the graph r(G; e) whose vertices are the faces of G and
whose edges connect a pair of face-vertices just when the faces share a vertex. A
set S of vertices of G is face-connected (in E) if the set of interior faces of G that
contain one or more of the vertices of S is connected.

Let A be a connected component of the graph G remaining after removing a
set S of vertices from G. The S-boundary of A is the set* of vertices of A that are
adjacent (in G) to vertices of S.

24

Lemma 4 If one removes a face-connected set of vertices S from the graph G,
then the S-boundary of every resulting maximal connected component of G is face-
connected.

Proof. Consider a maximal connected component A remaining after removing S
from G. Assume for contradiction that the set of S-boundary vertices of A is
not face-connected. There must then be at least two distinct maximal connected
components, call them F, and F2, of interior faces that contain boundary vertices
(so F U F2 is not connected). Let ',, i = 1, 2, be an interior face in component F,,
and let bi be a boundary vertex in face f, Since each edge of G lies in an interior
face, we can choose each j to contain a vertex of S as well as a boundary vertex.

Fact 1 There is a connected set I of interior faces, none of which contains a bound-
ary verteT, such that I separates f, from f2.

Ierification. It is not possible for both F, to encircle f2 and F2 to encircle fl, since
thn F, and F2 would intersect (so f, and 12 would be connected by interior faces
containing boundary vertices). Without loss of generality, say that F, does not
encircle f2.

Let J be the set of interior faces that do not contain boundary vertices and that.
are incident to the outer boundary of F, (so that 12 is on the outside). By definition,

the set J separates f from 12. If J is connected, then it is the desired set I. If J
is not connected, then adding the exterior face of G to J yields a connected set. J'.
Moreover, f2 must lie in one of the simply connected regions J" of J'. Deleting the
exterior face from J" then yields the desired set I; see Fig. 8.

Fact 2 I contains a vertex of A and a vertex of S.

Verification. I separates .f from 12, yet: fi and 12 both contain vertices of both A
and S; both A and S are face-connected in G.

Since I contains vertices of A and S and is connected, and since S separates the
connected set A from the rest of G, the set I must contain at least one face that
contains both a vertex from A and a vertex from S. Such a face must also contain
a vertex of the S-boundary of A, contradicting Fact 1. Lemma 4 follows. 0O

A set of vertices S of a graph K is d-quasi-connected, d a positive integer, if for
every two vertices u, w of S, there exists a chain of vertices

11 - ? 1, 111, 12,...- , V k ":-. W,

or S, where consecutive vertices v,, v,+, are distance < d apart in K.

25

E xTKK xf

Figure 8: (a) The embedding c, with the set J outlined boldly; "x" marks f2, and
"X" marks F2 with the holes filled in. (b) The set J' = J U (outer face). (c) The
embedding e, as in (a), with the set J" outlined boldly.

Lemma 5 The Fundamental Lemma for Butterfly-Like Graphs
Say that there is a subgraph K of G and a constant c such that

9- K is 4(G)-quasi-connected

9 the image of K under the embedding 1A lies within ct(G)6 consecutive levels
of B(p).

Then 6 > a(c)2LM, where ck(c) is a constant depending only on c.

Proof. Say that the image of H under t lies entirely in levels"

I + 1,1 + 2,...,I + cf(G)6

of B(p). Let u and v be arbitrary vertices of H which are connected by a path of
at most O(G) vertices in G. The image of this path in B(p) must lie totally within
levels

I - O(G)6 + 1,-...,I + (c + 1)4(G)6

of B(p), since the embedding p has dilation 6. See Fig. 9. Since K is 4(G)-quasi-
connected, this means that the PWL strings of all images of vertices of K can differ

SAl additon is niodulo p.

26

Figure 9: Illustrating the Fundamental Lemma, with t c-@(G)6 and h =OGb
Vertices of K reside in region II; length4O(G) paths between vertices of K cannot
ext end beyond regions I or Ill.

27

ouly in some set of at most ((c + 2)§(G) -I- 1)b bit positions. It. follows that K
cai ('oDlw.ain no imor than c*((;)2 1 2)* t.)+l)A vertices, i.e., r*((:)b levels of H)(p).
with at most 2((.." 1 t vertices per level, In other words.

ceb(G)b2 2#(0 > JKJ,

whence the result. 0

We now complete the proof of Theorem 3, beginning with two simple lemmas.

Lemma 6 Any face-connected set of vertices of G is 4(G)-quasi-connected.

Proof Sketch. Any vertex in an f-vertex face is distance < f/2 from any neighboring
face.]

Lemma 7 Let C be a set of vertices of the graph G whose removal partitions G
into connected components all of size < IGJ/2. Then C is a 1/3-2/3 separator of G.

Proof Sketch. Remove C from G, order the resulting connected components by size
into decreasing order, and lump the components into two piles as follows.

" Place the Largest component into the left pile.

" Place as few of the largest remaining components in the right pile as possible
until the right pile is bigger than the left.

" Now alternate piles, adding as few of the largest remaining piles as possible
to the smaller pile until the smaller first becomes bigger than the larger pile.

Clearly, when one has completed the two piles, the larger cannot be bigger than the
smaller by more than the size of the third largest component, i.e., by more than
IGi/3 vertices. It follows that each pile must contain at least IGI3 vertices, whence
the claim. 0

Theorem 3 will now follow from the next Lemma.

Lemma 8 The embedding ti must have dilation 6 > (const) C)

28

Proof. Partition B(p) into bands, each band Pi being a sequence of d,6 consecutive
levels, 24$(G) _< d, < 4O(G), where the constants t4. may be chosen in any way that
achieves a partition. Let ic(v), the color of vertex v of G, be the index i of the band
i in which u(v) resides.

We perform a modified breadth-first search of G, to find a 9(G)-quasi-connected
component of size > E(G), all of whose vertices have images in a single band of
B(p), hence the same color. By Lemma 5, the existence of such a component will
yield the lower bound on 6.

The breadth-first search proceeds as follows. We select an arbitrary vertex v(,
of G and form Vo, the maximal connected component of G that contains Vo and
that. consists entirely of vertices with color ,c(vo). Since Vo is connected, removing
ils vertices partitions G into connected components; let CO be the largest of these.
lemrnas 4 and 6 assure us that the V-boundary, B0 , of the component C, is O(G)-
quas&i-connected. It follows that

Fact 3 All vertices of B0 have the same color.

Verification. Since each v E B0 is adjacent to a vertex of Vi, we must have r.(v)
{ .(r,,) - I. rc(to) -+ 1}. Moreover, B0 cannot contain vertices of both colors: Two
such vertices would be separated by the band contradicting the fact that, A,
is 4b(G)-quasi-connected.

Next, form V,. the maximal monochromatic subgraph of G that contains both B,
aid all connected components of G that intersect Br,; obviously, V, is .1(G)-quasi-
c€onnected. so removing it partitions G into some number of connected components.
Let C, be the largest of these, and let B, be the V-boundary of C1. As with B,
one shows that B, is O(G)-quasi-connected and monochromatic.

We continue in this fashion, constructing, in turn, for i = 2,3,..., the following
subgraphs of G, with the indicated properties:

o V,: the (.1(G)-quasi-connected) maximal monochromatic subgraph of C that
contains both Bi-1 and all connected components of G that intersect Bi-I

(,,: the largest connected component of G remaining when one removes i
from G

B,: the (40(€)-quasi-connected, monochromatic) V-boundary of C,

Oi, (onifmes this construction until some subgraph V, contains at least 2(EG)
vertices. We now show that this point must occur.

29

a, I . ..- ii I i

Fact 4 For .ome i, IV,I E(G).

Veri. eaLion. Note that at each point in our construction, V, is whittled out of the
largest component C,- of G remaining after removal of V;-. from G. Moreover, V,
disconnects the vertices of C,.. - V from the remainder of G, as one can verify easily
by induction on i. At some point, therefore, the whittling process must reduce the
size of the then-current largest component C,, so that IC,l -GI/2. By Lemma 7,
the then-current V. is a 1/3-2/3 separator of G, hence must contain at least E(G)
vertices.

The preceding development gives us a set of vertices, of size > E(G), whose
images reside in a single band of d, levels of B(p). By Lemma 5, Theorem 3 follows.

5. THE COROLLARIES: X-TREES AND MESHES

Corollaries I and 2 now follow from the following Lemmas.

Lemmna 9 I1RI ,(X(h)) = fl(h) - f(logjX(h)l), and *(X(h)) = 5 (under the
natural embedding). _

Lemma 1 (e.g., HRI) E(M(s)) = 2(s) = fl(1M)), and 4(M(s)) =: 4 (under
the natural embedding).

6. CONCLUDING REMARKS

We close with some remarks about extensions to the research described here.

The lower bound of Theorem 3 cannot be improved in general, as one can see
from considering homeomorphs of the mesh.

Our lower bound for the mesh extends also to higher-dimensional meshes and
to pyramid graphs; thus, these are examples of other popular networks that embed
efficiently in the Hypercube, but not in butterfly-like machines.

The lower bound of Theorem 3, which deals explicitly only with embeddings in
the Butterfly, extends to embeddings in the mesh of trees, Cube-Connected-Cycles,
Benes network, and similar levelled networks.

*30

0~

We do not yet have an analogue of Theorem 3 for embeddings in the shuffle-
exchange and deBruin graphs". However, using rather complicated arguments, we
can prove that any expansion-O(l) embedding of the n-vertex X-tree or the n-vertex
mesh in these host graphs requires dilation fl(log log n). Since a complete binary
tree is a spanning tree of the deBruijn graph, the proof technique of Section 3 shows
that this lower bound for the X-tree is optimal. We suspect that the lower bound
for the mesh can be improved.

In order to justify dilation fully as the central measure of concern in network
embeddings, it would be nice to strengthen the results of Section 3 to show that
the Butterfly can simulate any graph having a v/i-bifurcator of size S = fl(log n)
with delay O(log S). We believe this to be possible using the arguments of Section
2, but we have not worked through the details.

Lastly, it should be noted that our lower bounds do not mean that a Butterfly
cannot efficiently simulate a mesh or X-tree efficiently over a large span of time. For
example, a Butterfly can simulate log n steps of a mesh of a constant fraction smaller
size within O(log n glogn) steps, and possibly within O(logn) steps. Similar
improvements in amortized simulation times are also possible for the X-tree. and
we are currently studying how good such amortized simulations can be in general.

ACKNOWLEDGMENTS: The authors wish to thank Dave Barrington and Les
Valiant for helpful conversations.

7. REFERENCES

[Ag I A. Aggarwal (1984): A comparative study of X-tree, pyramid, and related
machines. 25th IEEE Symp. on Foundation. of Computer Science, 89-99.

[ABR I F. Annexstein, M. Bumalag, A.L. Rosenberg (1987): Group-action graphs
and parallel architectures. Tech. Rpt., Univ. of Massachusetts; submitted for
publication.

[Be I V.E. Benes (1964): Optimal rearrangeable multistage connecting networks.
Hell Syst. Tech. J. 43, 1641-1656.

[BCLR I S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1986): Op-
timal simulations of tree machines. 27th IEEE Symp. on Foundations of
(oimputer ,'iefl(E. 27.1-282.

"' . ov , iall hsae graph, sincie each ran be embedded in Ie other with iil
,. .,,. ,,.aud dil.atio, 'l

31

Ja

[BI S.N. Bhatt and 1. Ipsen (1985): Embedding trees in the hypercube. Yale
Univ. Rpt. RR-443.

[BL I S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph
layout problems. J. Comp. Syat. Sci. 28, 300-343.

[DP) A.M. Despain and D.A. Patterson (1978): X-tree - a tree structured multi-
processor architecture. 5th Symp. on Computer Architecture, 144-151.

[Ga D. Gannon (1980): On pipelining a mesh-connected multiprocessor for finite
element problems by nested dissection. Intl. Con/. on Parullel Processing.

[GHR I D.S. Greenberg, L.S. Heath, A.L. Rosenberg (1987): Optimal embeddings
of the FFT graph in the Hypercube. Typescript, Univ. of Massachusetts;
submitted for publication.

[HR I J.-W. Hong and A.L. Rosenberg (1982): Graphs that are almost binary
trees. SIAM J. Comput. 11, 227-242.

[HZ I E. Horowitz and A. Zorat (1981): The binary tree as an interconnection net-
work: applications to multiprocessor systems and VLSI. IEEE Trans. Comp.,
C-30, 247-253.

[Le I F.T. Leighton (1984): Parallel computation using meshes of trees. 1983
Workshop on Graph- Theoretic Concepts in Computer Science, Trauner Verlag,

Linz, pp. 200-218.

[P V I F.P. Preparata and J.E. Vuillemin (1981): The cube-connected cycles: a
versatile network for parallel computation. C. ACM 24, 300-309.

[Ro j A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-
Theoretic Concepts in Computer Science: Proceedings of the International
Workshop WG80, Bad Honnef, Germany (H. Noltemeier, ed.) Lecture Notes
in Computer Science 100, Springer-Verlag, NY, 150-176.

32

